Quality Management I

http://lbgeeks.com/gitc/pmQual.php June 9, 2008

Outline

- What is Quality Management?
- QA Versus TQM Methods
- Data Gathering and Analysis
- Quality Documentation I
- Summary

What is Quality Management?

- Control production to always yield acceptable output
- Focus on production process (or create one if necessary)
- Reduce input, activity variances
- Result should be more acceptable output
- Control what matters most

QA Versus TQM Methods

- Quality Assurance:
 - Control activity at process output
 - Relies on inspection
 - Unacceptable output sent back for rework
- Total Quality Management
 - Control activity inserted throughout process
 - Entry, exit criteria ideal "hook" for this
 - Unacceptable output caught early

No Quality Management

- Customer bears inspection burden
- Customer may not order replacement
- Is producer really saving anything?

Quality Assurance Example

- Inspection burden removed from customer
- Customer not shipped defective output
- Producer may recycle faults for rework

Total Quality Management Example

- Inspection distributed throughout process
- Poor input blocked from process start
- Multiple quality check points

Data Gathering and Analysis

- Quality management needs inspection:
 - At output of last process
 - Or perhaps routine data during process
- Data collection centralized or distributed:
 - By people responsible for quality
 - By everyone involved in process
- Statistically significant sampling needed:
 - Granularity fine enough to evaluate process
 - Repetition enough to spot deviant trends

Quality Documentation

- Phase I:
 - Check Sheet
 - Histograms
 - Control Charts
- Phase II:
 - Ishikawa Diagrams
 - Pareto Charts
 - Scatter Diagrams
 - Flow Chart

Check Sheets

- Manual, real-time, quick data collection
- Performed by line workers
- Obtain measurements useful for internal process control
- Count of known potential defects
- Interpretation difficult unless other data used for collaboration

Check Sheet Example

Date:	28 March 2008
Inspector:	Venkassyan
Customer:	Hye Surf Boards California, Inc.

<u>Count</u>	<u>Defect</u>
744	Wax too thick
///	Pin stripes not distinct
//	Pin stripes have gap
/	Paint bubbles
////	Paint chipped

<u>Histograms</u>

- Quantize data into bins (or buckets)
- Different measurements within same bounded range are counted in same bin
- Linear, log, or exponential distribution provides different interpretation
- After sufficient sampling, real-time results show immediate range errors

Histogram Example

Part Width, Millimeters

Original samples taken to three significant digits

Control Charts

- Developed by Shewart circa 1920
- Measure a quality characteristic relative to established mean
- Key indicators:
 - Center line, or the mean
 - Control limits, upper and lower bounds
 - Zones of interest (optional)
- Samples over constant time units
- Quickly identifies process failures

Control Chart Example

Lines of Code Changed Over Time

Based on CVS check-in statistics

Summary

- Quality management reduces process variations resulting in defects
- Performed either by customer, after work complete, or at entry and exit phase
- Statistically relevant data needed to spot problems in advance
- Quality documentation comes from manufacturing, but may have application to software projects